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MOTION OF A CIRCULAR CYLINDER IN A VIBRATING LIQUID

UDC 532.582I. E. Kareva and V. L. Sennitskii

The motion of a circular cylinder under gravity in an ideal liquid bounded from the outside by
a vibrating wall is determined using numerical methods.

The motion of an absolutely rigid circular cylinder under gravity in an ideal incompressible liquid
bounded from the outside by a planar, absolutely rigid, vibrating wall was considered previously [1]. In that
work, it was established that in a vibrating liquid, a rigid body can behave paradoxically: a cylinder whose
density is different from the liquid density, can, in particular, be at rest on the average. The theoretical study
[1] of the paradoxical behavior of a rigid body in a vibrating liquid under gravity was continued in [2, 3]
(see also [4]). In [1, 3], analytical solutions of the problems of motion of rigid bodies (circular cylinder and
sphere) in a liquid were obtained under the assumption that the distance between the body and the wall is
large compared to the radius of the body. The present paper reports results of investigation of the problem
of [1] using numerical methods for the case where the distance between the cylinder axis and the wall surface
is insignificant compared to the radius of the cylinder.

1. We consider the problem in the formulation given in [1]. We assume that x and y are inertial
rectangular coordinates in the flow plane (Fig. 1), a is the radius of the cylinder, O(L, 0) is the point of
intersection of the flow plane with the cylinder axis, h (h > a) is the distance between the point O and the
line of intersection of the flow plane with the wall surface, H = L− h, ρcyl is the density of the cylinder, ρliq
is the liquid density, and g = (−g, 0) is the free-fall acceleration.

The equation of motion for the cylinder and the initial conditions in the coordinate system x̂ = x−H,
ŷ = y attached to the wall have the form

d2h

dt2
=

F

πa2ρcyl
− g − d2H

dt2
, (1)

h = h0,
dh

dt
= 0 for t = 0, (2)

where t is time, h0 is a constant, and F = πa2ρliq(g + d2H/dt2 + f1 d
2h/dt2 + f2a

−1(dh/dt)2 ) is the force
exerted by the liquid on unit length of the cylinder along the x̂ axis, which is found in [1]. Here

f1 = −4 sinh2η0

∞∑
m=1

am, f2 = 2 sinh η0

∞∑
m=1

bm + 4 sinh η0(cosh2η0 + 1)
∞∑
m=1

cm −
cosh η0

sinh2η0

,

where

am = m e−2mη0cothmη0, bm = m e−2mη0cothmη0[m cothmη0 + (m+ 1) e−η0cosh η0 coth (m+ 1)η0],

cm = m e−2mη0(m− coth η0) cothmη0, η0 = ln
h+
√
h2 − a2

a
.
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Fig. 1 Fig. 2

TABLE 1

β ε− ε+ 〈s〉

1.09 0.92028694 0.92028695 1.2389

1.16 0.93397724 0.93397725 1.2398

1.25 0.94949407 0.94949408 1.2405

1.34 0.96285645 0.96285646 1.2408

1.45 0.97650449 0.97650450 1.2405

1.57 0.98825821 0.98825822 1.2397

2. Let

H = A0

(
1− cos

2πt
T

)
, (3)

where A0 (A0 > 0) and T (T > 0) are constants.
According to (1)–(3), we have

A
d2s

dτ2
+B

( ds
dτ

)2

+ C = 0, (4)

s = 1,
ds

dτ
= 0 for τ = 0, (5)

where τ = t/T , s = h/h0, A = f1 − ρ, B = f2/ε, and C = ε(1− ρ)(β + 4π2α cos 2πτ) (α = A0/a, β = gT 2/a,
ε = a/h0, and ρ = ρcyl/ρliq).

Problem (4), (5) reduces to the problem

dQ

dτ
= F , (6)

Q = Q0 for τ = 0, (7)

where

Q =
(
s

q

)
, Q0 =

(
1
0

)
, F =

(
q

f

) [
q =

ds

dτ
and f = − 1

A
(Bq2 + C)

]
.

3. Problem (6), (7) was solved numerically using an explicit three-stage Runge–Kutta method with
fourth-order approximation in a step [5]. Values of f were calculated from the first K terms of the series in
the expressions for f1 and f2, and the estimates of the residues of these series obtained in [1] were used. In
the calculation of the motion of the cylinder, the parameters had the following values: α = 1, β = 1.09, 1.16,
1.25, 1.34, 1.45, and 1.57, ρ = 0.5, K = 60, and d = 0.001.
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For various values of β, we obtained intervals that contain the values of ε for which the cylinder is at

rest on the average, vibrates about the position 〈s〉 =

1∫
0

s dτ , and is in the state of paradoxical equilibrium

(see Table 1).
Figure 2 gives a curve of s versus τ for β = 1.57 and ε = 0.98825821.
4. The calculations performed lead, in particular, to the conclusion that the paradoxical behavior of a

circular cylinder in a vibrating liquid, established in [1] for the case where the ratio of the cylinder radius to
the distance between the cylinder axis and the wall surface is small compared to unity, also occurs for large
values of this ratio compared to unity.
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